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Fig. 5. Ratios of the real and imaginary parts of the sheet impedances to the
real part of the surface mmpedance of thick conductors Rs = 1/0é and sheet
resistance R = 1/ot as a function of ¢/é for the LSE and LSM modes when
a =0.0 = 588(10") S/m and F = 10 GHz.

It is also interesting to note that the sheet resistance and surface
mmpedance are usually derived for a field distribution which depends
only on the coordinate normal to the plane, i.e., only on ¥. In the
present analysis, this corresponds to the specific case where a = 0.
Indeed. only under these conditions, the two sheet impedances of the
two modes are equal for all values of the thickness as shown in Fig. 5.

IV. CONCLUSION

This paper presents a detailed study of the concept of sheet
impedance, defined as the ratio of the tangential electric field at
the surface of a conductor to the conduction current per unit length
it carries. We report that the sheet resistance depends on the field
distribution in the structure. In the limit of thin conductors, the sheet
impedance of a LSM mode is twice that of a LSE mode when the field
varies slowly in the direction normal to the conductor (¢ — 1). When
the fields vary rapidly in the same direction. the sheet impedance of
a LSE mode is twice that of a LSM mode when the conductor is very
thin (#/6 < 1). In the limit of thick conductors the sheet impedance
approaches (1 + j)/cé and is independent of the field distribution.
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Accurate Analysis of Losses in Waveguide Structures
by Compact Two-Dimensional FDTD Method
Combined with Autoregressive Signal Analysis

Masafumi Fujii and Sumio Kobayashi

Abstract— An efficient two-dimensional finite-difference time-domain
(2-D FDTD) method combined with an autoregressive (AR) signal analysis
has been proposed for analyzing the propagation properties of microwave
guiding structures. The method is especially suitable for analyzing lossy
transmission lines; and in contrast with previous approaches, it is based
on an algorithm of a real domain only. The algorithm is verified by
comparing the numerical results with exact solutions for dielectric loaded
rectangular waveguides. The conductor losses in a variety of microstrip
lines and coplanar waveguides have been accurately estimated by solving
the electromagnetic fields in the conductors directly.

1. INTRODUCTION

This paper proposes a new algorithm based on two-dimensional
finite-difference time-domain (2-D FDTD) method [1]-{3] com-
bined with an autoregressive (AR) signal analysis [4] for predicting
the conductor losses in microwave circuits such as i monolithic
microwave/millimeter-wave integrated circuits (MMIC's) and mul-
tichip modules (MCM’s). In previous 2-D FDTD methods [1], the
waveguide structures are assumed to be uniform and infinitely long
in the direction of wave propagation (say =), and support modes with
propagation constants /7 independent of z. Those mean that the z
derivative can be replaced with j/3, and result in a formulation of
the algorithm 1 complex domain. Recently new algorithm have been
proposed for enabling 2-D FDTD analysis in real domain [2], [3],
however, those are restricted 1n the analysis of loss-less lines

In contrast with previous approaches, we assume that the wave-
guide has a finite length [, and is bounded with two infinitely large
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electric planes at both ends; in other words, we analyze an ideal
resonator instead of an infinitely long transmission line. Under the
assumption, the fields have a z dependency of cos (8 z) or sin (3 z)
with 3 = «/l (for the fundamental mode in # direction). Thus the
2-D FDTD analysis can be performed in real domain.

In this formulation, the fields excited by a pulse with a short time
duration show generally a property of damped oscillation with a
resonant frequency €2 and a damping factor £. The characteristic pa-
rameters of an infinitely long transmission line, the angular frequency
w and the attenuation coefficient « can be obtained from the damped

oscillation parameters €2 and £ with simple mathematical formula as °

described later. The situation is very analogous with the relations
between the transmission line method and the resonance method in
standard microwave impedance measurements [5].

An AR method is adopted in this paper to estimate the damped
oscillation parameters ) and &, because a damped oscillation satisfies
exactly the autoregression equation. Although the AR signal analysis
has been adopted to reduce the calculation time in FD-TD analyzes
by predicting unknown future signals from the past time series [6],
[71, the adoption of the AR method in this paper is for quite different
purpose from the previous approaches.

Furthermore, the electromagnetic fields in conductors are directly
analyzed by forming sufficiently small grids in the conductors com-
pared to the skin depth. The number of grids are reduced by using
graded grids, which are varied from submicron to millimeter to
suppress numerical errors.

II. MATHEMATICAL FORMULATION

We suppose an inner region bounded by infinitely large electric
planes at = = 0, and z = [, respectively. In this region, the
electromagnetic fields can be expressed by

X(z, y, 2) = X(z, y) sin (8 2),

for X=F;, FE,, or H. )]
and
Y (2,9, 2) =Y (2, y) cos (32),
for Y=H,, H;, or E; 2)

where [ is the phase constant given by = /l. Thus, the = derivatives
of the fields X and Y can be replaced by 5, and —3, respectively,
and the electromagnetic fields are in real domain. Thus, Maxwell’s
curl equations can be written as follows:

VtXE+VZ><ﬂEt=—Moaa—I;I 3
and
OE
VixH—-Vz x SH;, =J 4+ 0E + ¢ge, — (CY)

ot

where subscript ¢ denotes the tangential components in z—y plane.
Current source J in (4) is used for exciting the fields in the present
algorithm; J, or J, component is used for the application in this
paper. That is a raised cosine pulse given for J, as an example by

Jy(lﬁ, Y. z) =
nt

] 2 at . -
{Jy(.t, y) sin (T) sin(8z), for 0 <t < T )
0, for T <t

Maxwell’s curl (3) and (4) are discretized in space on the basis of
the compact FDTD grids as in [2].

The damped oscillation of the excited fields in the resonator can
be written by the following equation for a multimode case

K
fa= Z lexp(—E&xnAt){Afr cos (2nit,)
k=1
+ Byy, sin (QinAts)}, for n=1,2,--- (6)
where f,, denotes a field component at nth sampling period n At,,
and A the total number of modes. The field component in (6)

rigorously satisfies an autoregressive equation

2K
Z akfn~k :0, with ap = 1,
k=0

for n=2K+4+1,2K+4+2, --. @

This is easily shown by using the z-transform. The z-transform of
(6) is given by

_ Px(Z)

with
K
Qx(2) = [[ {2 - 22 exp (—ExAts) cos (AL,)
k=1
+ exp (—2€LAts)} )]

where Py (Z) is a polynomial of Z with 2K order at most. Equation
(9) can be rewritten as

2K
Qr(2) =Y ax2*™7*, with ao=1. (10)
k=0
On the other hand, the z-transform F'(Z) has a property of
F(Z)=) f.27" (1)
=0

By combining (8) and (11), we can get the autoregressive equation
.

AR method is applied to the time series data which are later than the
time T+ 2k At,, where T is the duration of the exciting pulse. After
determining the autoregression parameters a, with the AR method,
the parameters of the damped oscillation €2; and & can be obtained
by solving

Qk(Z)=0 12)
because the roots of (12) are given by
Zy = exp (—{k Aty £ §Qi At,),
for k=1,2,---, K. 13)

The angular frequency wie and attenuation constant o for a
given phase constant § in an infinitely long transmission line have
the following relations to the damped oscillation parameters of the
transmission line resonator 2 and &g,

wk = (9% + €1)1/? (14)
and
o = . a1s)
dpr
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Fig. 1. The cross section of the dielectric loaded rectangular waveguide.
Three cases were analyzed: i) air-filled waveguide (t = 0 mm), ii) waveguide
with centered dielectric slab (¢ = 10 mm), and iii) dielectric-filled waveguide
(t = 40 mm). The grid size adopted in cases i) and iii) is 0.9524 x 0.9375
mm. And that in case ii) is 1.0 x 0.9375 mm in the dielectric region and
0.9375 x 0.9375 mm in the air region. A magnetic wall condition is set on
the vertical center of the waveguides.
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Fig. 2. The time series FDTD signals of the electric and magnetic fields at
the center of the rectangular waveguide and the fitting results by the AR signal
analysis (3 = 40 rad/m). (a) The single TE1¢ mode in the rectangular wave-
guide with centered dielectric slab. The estimated frequency and attenuation
constant by the AR method are 3.44 GHz and 1.47 dB/m, respectively. (b)
The multimode of TE;o and TE3¢ modes in the dielectric-filled rectangular
waveguide. The estimated frequencies and attenuation constants are 2.97 GHz
and 2.55 dB/m for TE,y mode, and 7.80 GHz and 6.86 dB/m for TEj3g
mode, respectively. The AR method is applied after the time pointed by the
downward arrows.

0 100

III. RESULTS AND DISCUSSION

A. Dielectric Loaded Rectangular Waveguide

The present method was applied to the analysis of dielectric loaded
rectangular waveguides. Three cases were analyzed as shown in Fig.
1: i) air-filled waveguide, i) waveguide with centered dielectric slab
with its width ¢ = 10 mm, and iii) dielectric-filled waveguide with
t = 40 mm.

200

B (rad/m)
> o
o (o)

(4]
o

@

10 -
— Exact
gt + 2D-FDTD
30
E 6f
[oe]
K=
s AT =40
(dielectric filled)
2 -
O i L]
2 5 10 15
Frequency (GHz)
(b)

Fig. 3. The 2-D EDTD results of (a) the phase constants and (b) the
attenuation constants compared with the exact solutions [8] of the dielectric
loaded rectangular waveguides shown in Fig. 1.

The dimensions of the waveguide are 40 mm in width @, 15 mm
in height b. The dielectric constant ¢, and the conductivity ¢ of the
dielectric material were set to be 2.0 and 1.0 x 1072 S/m respectively.
The waveguide wall was assumed to be a perfect conductor, and the
magnetic wall condition is set on the vertical center of the waveguide.
The adopted grid size was around 1 mm square. The distribution of
exciting pulse was a sum of TE;o and TEse mode for the cases 1)
and iii), and TE;¢ mode for case ii). The pulse duration T' was set
to be a half cycle of the resonant oscillation for air-filled case. The
parameter K for AR analysis was chosen to be two for all cases.

Fig. 2 shows the time series voltage and current in the waveguides
calculated for b = 40 rad/m; Fig. 2(a) is for case ii), and Fig. 2(b) for
case iii). The time series data in Fig. 2(a) and (b) demonstrate single
and double mode damping oscillation respectively after the end of
the launched raised cosine pulse. The fitting results by the AR signal
analysis show excellent agreements with FDTD data.

The dispersion characteristics of « and J, shown in Fig. 3 are in
good agreement with the exact solutions in [8]. These results show
the validity of the present algorithm combined with the AR method.

B. Microstrip Lines

Three types of microstrip lines are investigated: a narrow copper-
polyimide significantly lossy line for MCM applications, a wide
silver-alumina slightly lossy line, and microstrip lines fabricated on a
GaAs substrates with a passivation film for MMIC applications [9],
[10].

1) Copper-Polyimide Microstrip Line: The cross section of the
line is shown in Fig. 4. The materials are copper for conductors
and polyimide for dielectric. The strip conductor width and thickness
are 25 pm and 4 pum, respectively. The dielectric thickness is 8 pm.

The magnetic wall condition is set on the vertical center of the
strip conductor. The electrical wall conditions are set on the top and
bottom boundaries, and the magnetic wall condition is set on the outer
side boundary due to convenience for grid formation. The absorbing
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12.5 (wm)

l - X 128
. Fig. 4. The cross section of the copper-polyimide microstrip line. In the
analysis, electric wall conditions are set on the top and bottom boundaries and
magnetic wall conditions are set on the side and the vertical center boundaries.
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Fig. 5. The comparison of the computational results together with the con-
ventional theoretical results and experimental data for the copper-polyimide
microstrip line.

boundary conditions (ABC’s) are not adopted here, because the outer
side and top boundaries are placed far away from the strip conductor,
so they do not affect the calculated results. A series of preliminary
calculation showed that the effects of analytical region are negligible
for parameter estimation when the width (z-direction) and the height
(y-direction) of the region are larger than ten times of the dielectric
thickness. Therefore the width and the height of the analytical region
were chosen to be 16 times of the dielectric thickness, respectively.

In the graded grids formation, hyperbolic sine function [11] is
adopted in the outer region, and hyperbolic tangent function [11]
is adopted in the inner regions. It is known that these types of grid
formation generate the gradually changed grid spacings, and minimize

973
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Fig. 6. The computational results of the silver-alumina microstrip line. The
effect of the surface roughness was considered with the empirical formula
[16] both for computational and theoretical results.

the numerical error [12]. The minimum grid spacing is chosen to be a
tenth of the skin depth. These criteria for grid generation are adopted
throughout the analysis described below.

The computational results of the effective dielectric constant,
attenuation constant, and characteristic impedances are compared
together with the experimental and the conventional theoretical results
[13] in Fig. 5. The sample is measured with network analyzer HP8510
and microwave probes (Cascade Microtech Inc.). The characteristic
impedance measured with time domain reflectometry (TDR) was 42
Q. Ripples in the measured attenuation constant in Fig. 5, which is
due to the impedance mismatch, are suppressed by the large insertion
loss of the sample. The computational results agree well with the
measured data.

In contrast with the computational results, the conventional TEM
mode approximation theory fails to predict the attenuation constant.
In addition, the conventional theories [14], [15], which assume TEM
mode propagation, also fail to predict the frequency dispersion prop-
erties of effective dielectric constant and characteristic impedance
observed in a lossy transmission line.

2) Silver-Alumina Microstrip Line: The slightly lossy microstrip
line of 0.8 mm wide silver strip conductor (¢ = 5.26 X 10™ S/m)
and 0.82 mm thick 96% pure alumina substrate (e, = 9.6) as shown
in the inset of Fig. 6 was investigated. The alumina substrate has a
surface roughness of approximately 1 pm. The sample was measured
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Fig. 7. The computational results of the microstrip lines fabricated on a
GaAs substrates compared with the published data [9], [10].

with a network analyzer and microstrip-coaxial transform launchers.
The measured characteristic impedances was 51.5 Q2. The sharp peaks
in the measured attenuation constant in Fig. 6 were produced by the
unnecessary resonances between the launchers due to the reflection
at the connection of the sample and the launchers.

The grids are also formed by hyperbolic sine or hyperbolic
tangent function. The computational results of the effective dielectric
constants, attenuation constants, and characteristic impedances are
compared with the conventional theoretical results and measured
results in Fig. 6. The effects of surface roughness were considered
with the empirical formula [16] both for computational and theoretical
results. The attenuation constants obtained with the three approaches
show satisfactory agreement with each other.

3) Microstrip Lines Fabricated on GaAs Substrates: The mi-
crostrip configurations analyzed is shown in Fig. 7. The strip line
widths are 550 pm and 30 pm, and the thickness of the conductor
and the GaAs substrate is 6 um and 200 pm, respectively. The
conductance of the conductors is 1.8 x 107 S/m, and the dielectric
constant ¢, and the loss tangent tan 6 are 12.9 and 3 X 1074
for the GaAs substrate, and 3.4 and 5 x 1072 for the polyimide
passivation film, respectively. The results were compared with precise
measurement with a ring resonator method [9] and numerical results
with a mode matching technique [10]. The grids are also formed by
hyperbolic sine and hyperbolic tangent function. The characteristic
impedance is 26 §2 for 550 pm wide line and 86 Q for 30 um
wide line. The 2-D FDTD results show good agreement with the
published data.

C. Coplanar Waveguide

The cross section of the coplanar waveguide under investigation is
shown in the inset of Fig. 8. The materials are gold (¢ = 3.0 x 107
S/m) for the conductors and 99.9% pure sapphire (e, = 9.9) for the

air .
800 w=52u| s=24p (800
274 o =3x107 S/m
500 || Sapphire | (¢,=9.9)
7 — "M.W.
13
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&= i o [} o} ¢} o o ] o
2 5
4 -
3 1 1 1 i
(a)
250
o Compact 2D-FDTD
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=100
50
0 . ; . .
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55
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e o o o 0o o o o o
N a5t
40 PR ST | 1 1 Lo 1
0 10 20 30 40
Frequency (GHz2)

()

Fig. 8. The computational results of the coplanar waveguide together with
experimental data.

dielectric substrate. The characteristic impedance measured with TDR
was 50 . In the analysis, the hyperbolic sine and hyperbolic tangent
types of graded grids are also adopted, and electric and magnetic wall
conditions are set as in the microstrip configuration. The analytical
region of the coplanar waveguide of the line width w and the gap s
is chosen to be 16(w/2 + s), from the preliminary analysis on the
influence of the boundaries. The S-parameters were directly measured
up to 40 GHz with a network analyzer and microwave probe. The
characteristic impedance of the sample is well controlled to be 50 2.
The numerical and experimental results for the attenuation con-
stants, effective dielectric constants, and characteristic impedances
are shown in Fig. 8. The numerical results both for the attenuation
constants and the frequency dispersion of the effective dielectric
constants are in satisfactory agreement with the experimental data.

IV. CONCLUSION

A compact 2-D FDTD algorithm formulated in real domain is
proposed. The 2-D FDTD method combined with an AR signal
analysis method is applied to the analysis of propagation properties
of waveguiding structures. The present algorithm is validated by
comparing the computational results with the exact solutions for
dielectric loaded rectangular waveguides. The conductor losses in
various types of microstrip lines and a coplanar waveguide are ana-
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lyzed. The electromagnetic fields in conductors are directly analyzed
by forming sufficiently small grids compared to the skin depth, and
accurate attenuation constants are obtained for the lossy structures.
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A Simple Formula for the Concentration of Charge
on a Three-Dimensional Corner of a Conductor

Yimin Zhang and A. H. Zemanian

Abstract—A major problem in the computation of capacitance coeffi-
cients for microwave transmission and VLSI interconnection systems is
caused by the singularities in the electric field at the corners and edges
of conductors. For edges, a solution is given by the Duncan correction,
which is based on a two-dimensional (2-D) polar expansion of the field.
No such exact expansion exists for corners. Recent research by Beagles
and Whiteman has yielded an asymptotic expansion for the electric field
in the vicinity of a rectangular three-dimensional conductive corner, and
this is used to derive a simple formula for the charge @ (in coulombs)
concentrated at any such corner. The formula is Q@ = 1.307 ed(V. — V,),
where ¢ is the dielectric permittivity (in farads per meter) of the medium
surrounding the conductive corner, d is the length (in meters) of one
side of a cubic region situated on the conductor adjacent to the corner,
V. is the electric potential (in volts) of the conductor, and V; is the
electric potential at a point in the medium displaced from the corner’s
apex along a line through the cube’s diagonal and at a distance equal
to that diagonal. @ is the charge on the cube’s three surfaces lying
along the conductor’s surfaces. Such a configuration is convenient for
a finite-difference computation of capacitance.

1. INTRODUCTION

This paper concerns the capacitance coefficients of three-
dimensional (3-D) conductors, a matter of importance to microwave
transmission networks, VLSI interconnects, power transmission
systems, electric equipment, and electrical insulation technology.
Much work has been done on the computation of capacitances for
two-dimensional (2-D) models of interconnection lines and other
conducting bodies, but much less has been accomplished for 3-D
models. Extended bibliographies are given in [6], [7]. A major
difficulty arises from the singularities in the electrical field at 3-D
corners of a conductor. There are also field singularities along the
edges of conductors, but their contributions to capacitances are
readily determined by Duncan’s correction [2], [S], which is based
upon an exact 2-D polar expansion of the field. Since no such
exact expansion exists in spherical coordinates, there is no exact
3-D analog of the Duncan correction. Instead, we have sought an
approximating asymptotic expansion for the electrical field near a
3-D reentrant corner. There is a literature on this subject; see for
an extended bibliography in [7]. Much of this work is of a very
general nature dealing with a variety of differential equations and
a variety of geometries. The paper of Beagles and Whiteman [1]
is the most pertinent one for our purposes. By using the results
of that work, we have derived a simple formula that takes into
account the concentration of charge at any 3-D rectangular corner.
This is most easily used in correcting the capacitances obtained from
finite-difference computations.
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